Quantcast
Channel: Submarine & Other Matters
Viewing all articles
Browse latest Browse all 2347

Figure 5 Relationship between output of DE and IR for a LIB-submarine on patrol.

$
0
0
Anonymous has kindly provided the following figure and description. This is in the context of Anonymous's previous article Submarine electricity discharge & generation using combinations of Diesels, LIBs, LABs & AIP of April 20, 2017.

Figure 5 Relationship between output of a Diesel generator (DE) and Indiscretion Ratio (IR) during a LIB submarine’s patrol.
---

The Vertical axis (above) is output of the is in kW.

The Horizontal axis is Indiscretion Ratio (IR) expressed as:

time for snorting /time for snorking + time for operating AIP or batteries) x 100

Power required (PT) is: Propulsion Load (PL= 60kW) and Hotel Load (HL)

Blue, PT=250kW (HL=190kW) based on current submarine; red, PT=300kW(HL=240kW); green, PT=350kW (HL=290kW); violet, PL=400kW(HL=350kW). IR=indiscretion ratio.

With the combat system requiring large amounts of electricity, Lead-acid Batteries (LABs) frequently cannot satisfy the electrical requirement because of its poor capacity. As a result, the capability of  the sonar system of a LAB submarine is inferior to that of an SSN.

In contrast, Lithium-ion Batteries (LIBs) can meet the high electical requirements. Utilising higher kW DEs, LIBs can supply more electricity for the HL, remembering that the PL also requires large amounts of electricity in a large conventional submarine.

If the output of DE is 6000kW within the framework of snorting ability, there is an excellent Indiscretion Ration of 6.25% where expected PL  is 400kW and HL is 350kW..

A well-developed LIB-submarine has the following advantages:
i)        a reduction in indiscretion ratio,
ii)      improvement of high speed performance, and
iii)    enhancement of sensors and processing systems.

Anonymous

Viewing all articles
Browse latest Browse all 2347

Trending Articles